Name: Dr. Prosenjit Biswas Designation: Assistant Professor Qualification: M.Sc., Ph.D. (Physics) Date of Joining: 10 th December, 2019 Email: prosenbiswas1993@gmail.com Specialization: X-ray Crystallography Research Interest/Area(s): Material Science

Academic Qualification:

Qualification	Institution	Year
M.Sc.	Jadavpur University	2016
Ph.D.	Jadavpur University	2022

Research Experience:

	Place of Work/ In-	Duration		
Designation	stitution	From	То	
Junior Research Fellow	Jadavpur University	January 2017	December 2018	
Senior Research Fellow	Jadavpur University	January 2019	November 2019	

Teaching Experience:

Designation	Place of	Duration		
Designation	Work/Institution	From	То	
Assistant Professor	Kalimpong College	December 2019	Continuing	

Research Interest:

The synthesis of structural nanomaterials, polymer-based nanocomposites for the development of energy harvester such as piezoelectric, triboelectric, hybrid nanogenerator, electronic skin, piezo sensor and energy storage material.

Technical Skills:

Instruments expertise: FESEM, AFM, XRD, FTIR, Electrometer, DSO, Impedance analyser, Zeta sizer, optical microscopes, UV-visible spectroscopy, PL spectroscopy etc.

Achievements/Awards:

- 1. DST Inspire Fellow (2012-2016)
- 2. Secured 1st position under the category of Basic Science in "National Anveshan Student's Research Convention (2017-2018)" in national level.

Personal Link for website/youtube/facebook/etc.:

Google Scholar Link: <u>https://scholar.google.com/citations?hl=en&user=Rz5Mta8AAAAJ</u>

Research Gate Link: https://www.researchgate.net/profile/Prosenjit-Biswas-2

	International Journal					
Sl. No	Title of the article with page No.	Name of the Journal	ISSN	Vol. & Issue No	Year of Publication	
1.	Er ³⁺ /Fe ³⁺ Stimulated Electroac- tive, Visible Light Emitting, and High Dielectric Flexible PVDF Film Based Piezoelectric Nano- generators: A Simple and Supe- rior Self-Powered Energy Harvester with Remarkable Power Density https://doi.org/10.1021/acsami.7 b08008	ACS applied materials & interfaces	1944-8244 (print) 1944-8252 (web)	9(27)	2017	
2.	Superior Performances of in Situ Synthesized ZnO/PVDF Thin Film Based Self-poled Piezoelectric Nanogenerator and Self-charged Photo-power Bank with High Durability https://doi.org/10.1016/j.nanoen. 2017.11.065	Nano Energy	2211-2855	44	2018	
3.	In situ Synthesized Electroactive and Large Dielectric BaF2/PVDF Nanocomposite Film for Superior and Highly Durable Self-Charged Hybrid Photo-power Cell https://doi.org/10.1016/j.enconm an.2018.06.050	Energy con- version and man- agement	0196-8904	171	2018	
4.	Bio-Waste Crab Shell extracted Chitin Nanofiber Based Supe- rior Piezoelectric Nanogenerator https://doi.org/10.1039/C8TA04 074E	J. Mater. Chem. A	2050-7496	6	2018	
5.	In Situ Synthesized SrF2/polyvinylidene Fluoride Nanocomposite Film Based Photopower Cell with Imperious Performance and Stability https://doi.org/10.1016/j.electact a.2018.06.054	Electro- chimica Acta	0013-4686	282	2018	
6.	Antimicrobial and Biocompati- ble Fluorescent Hydroxyapatite- chitosan NanocompositeFilms for Biomedical Applications https://doi.org/10.1016/j.colsurf b.2018.07.028	Colloids and Surfaces B: Biointer- faces	0927-7765	171	2018	
7.	Portable Self-Powered Piezo- electric Nanogenerator and Self- Charging Photo-Power PackUs- ing In-Situ Formed Multifunc- tional Calcium Phosphate Nano-	Langmuir	0743-7463	35	2019	

	rod-Doped PVDF Films				
	https://doi.org/10.1021/acs.lang				
	muir.9b03264				
8.	Highly Efficient and Durable				
0.	Piezoelectric Nanogenerator and				
	Photo-Power Cell Based	ACS Sus-			
	on CTAB- Modified-	tainable			
	Montmorillonite Incorporated	Chem.	2168-0485	7 (5)	2019
	PVDF Film	Eng.			
	https://doi.org/10.1021/acssusch	6			
	emeng.8b05080				
9.	Self-charging Photo-power Cell				
	Based on a Novel Polymer				
	Nanocomposite Film with	Polymer			
	High Energy Density and Dura-	Journal (Na-	0032-3896	51	2019
	bility	ture)			
	https://doi.org/10.1038/s41428- 019-0230-3				
10.	Photo-Rechargeable Organic–				
10.	Inorganic Dye-Integrated Poly-				
	meric Power Cell with				
	Superior Performance and Du-	Langmuir	0743-7463	35	2019
	rability	6			
	https://doi.org/10.1021/acs.lang				
	muir.9b00622				
11.	Essential Oil Impregnated Lu-				
	minescent Hydroxyapatite: An-	Materials			
	tibacterial and Cytotoxicity	Science &	1873-0191	116	2020
	Studies	Engineering	10/3-0191	110	2020
	https://doi.org/10.1016/j.msec.2	C			
	020.111190				
12.	Sustainable and Superior Poly-				
	meric Piezoelectric Nanogenera-				
	tor for Sensing Human Body	Applied	1055 0110	110	2021
	Vibration, Air Flow and Water	Physics Let-	1077-3118	118	2021
	Wave	ters			
	https://doi.org/10.1063/5.00348				
12	79 Development of a Sustainable				
13.	Development of a Sustainable				
	and Biodegradable Sonchus as-				
	per Cotton Pappus Based Pie- zoelectric Nanogenerator for				
	Instrument Vibration and Hu-				
	man Body Motion Sensing with	ACS omega	2470-1343	6(43)	2021
	Mechanical Energy Harvesting				
	Applications				
	https://doi.org/10.1021/acsomeg				
	a.1c03374				
14.	Self-Polarized ZrO2/Poly (viny-				
	lidene fluoride co hexafluoro-				
	propylene) Nanocomposite	DI			
	Based Piezoelectric Nanogene-	Physica sta-	1862-6300	218(9)	2021
	rator and Single Electrode Tri-	tus solidi (a)			
	boelectric Nanogenerator for				
	Sustainable Energy Harvesting				
	rator and Single Electrode Tri- boelectric Nanogenerator for	tus solidi (a)		(-)	

	from Human Movements https://doi.org/10.1002/pssa.202 000695				
15.	Piezoelectric activity assessment of size-dependent naturally ac- quired mud volcano clay nano- particles assisted highly pressure sensitive nanogenerator for green mechanical energy har- vesting and body motion sensing https://doi.org/10.1016/j.nanoen. 2022.107628	Nano Energy	2211-2855	102	2022
16.	High β-crystallinity comprising nitrogenous carbon dot/PVDF nanocomposite decorated self- powered and flexible piezoelec- tric nanogenerator for harvesting human movement mediated energy and sensing weights https://doi.org/10.1016/j.cerami nt.2022.10.070	Ceramics International	1873-3956	49 (3)	2023